Плазменная резка металлов
Методы дуговой, газодуговой и газовой резки в применении к цветным металлам и высоколегированным сталям не обеспечивают высокой чистоты реза, малопроизводительны и дорогостоящи. Поэтому в последние годы для выполнения качественной резки сплавов алюминия, легированных и даже низкоуглеродистых сталей все большее
а) | б) |
Рис. 1 Схема плазменных горелок для резки: a - с прямой дугой б - с косвенной плазменной струей |
применение получила плазменная резка. Сущность ее заключается в том, что обрабатываемый металл в зоне реза расплавляется и частично испаряется с помощью струи плазмы, получаемой в дуге. Этой же струей расплавленный металл удаляется из полости реза. Температура плазмы достигает 30 000°С, а скорость ее истечения из сопла плазменной горелки -2000 м/с. Плазменная резка может применяться для металла толщиной от долей до десятков миллиметров. Для резки толстых листов из алюминия и его сплавов, нержавеющих сталей и других сталей и сплавов целесообразно применять процесс со сжатой дугой прямого действия, т. е. дугой, горящей между электродом плазменной горелки и разрезаемым листом (рис. 1, а). Для резки тонких материалов используют схему с плазменной струей косвенного действия - с плазмой, выделенной из столба дуги (рис. 1, б). Для резки применяют аргон, смеси аргона с водородом, а также смеси азота с водородом, водовоздушные смеси, а сейчас чаще просто воздух.
Мощными плазменными горелками, работающими при напряжении дуги до 200 В, можно разрезать листы толщиной до 150 мм и более со скоростью до 1 м/мин, а листы толщиной до 66 мм - при скорости до 5 м/мин и более. Плазменная резка алюминиевых сплавов и других цветных металлов и легированных сталей позволяет получать резы с высоким качеством (по чистоте и точности) и отличается наибольшей экономичностью по сравнению со всеми другими методами резки. Для низкоуглеродистых сталей плазменная резка особенно эффективна при обработке листов толщиной до 30 мм.
Плазмотрон - главное устройство для получения плазмы при нормальном давлении было разработано еще 100 лет назад. Одно из самых распространенных применений этого изобретения - разработанные в 60-ые годы прошлого века аппараты воздушно-плазменной резки металлов. Важно отметить, что сразу после появления оборудования для воздушно-плазменной резки металлов, оно получило широкое распространение на предприятиях ВПК, авиапрома, атомной энергетики и в других высокотехнологичных областях народного хозяйства.
Физической основой воздушно-плазменной резки является выдувание электрической дуги сжатым воздухом, с последующим местным плавлением металла и удалением его из зоны резки разогретым газовым потоком. Дуга, свободно горящая в воздухе, имеет температуру 6000 - 8000 К. Если увеличить внешнее охлаждение дуги, сжав ее потоком газа, то ее температура возрастет до 20000 К и вокруг дуги формируется газовый поток. Такое состояние вещества называют низкотемпературной плазмой. Устройства, в которых электрическая энергия превращается в тепловую энергию потока низкотемпературной плазмы, носят название плазмотроны.
С момента появления первых образцов оборудования источники образования плазмы стали меньше, легче, надежнее; плазмотроны тоже уменьшились в размерах, стали намного проще и совершеннее. Так почему же до сих пор технология воздушно-плазменной резки для многих ассоциируется с применением очень сложного, громоздкого и дорогого оборудования? Может быть просто потому, что было очень мало публикаций, в доступной форме рассказывающих об этом методе. А ведь производства, сменившие устаревшую технологию газокислородной резки на воздушно-плазменную, теперь уже не могут представить, как раньше без нее обходились.
Воздушно-плазменная резка, как и газокислородная, относятся к одной группе термической резки металлов. Это обуславливается одним и тем же принципом действия: местный нагрев с последующим выдуванием расплавленного металла из зоны резки. Отличие их в том, что при газокислородной резке источниками энергии являются горючее и окислитель, а при использовании воздушно-плазменной резки - энергия электрической дуги. Но по сравнению с газокислородной, воздушно-плазменная резка имеет ряд существенных преимуществ.
Так как температура плазмы достигает десятков тысяч градусов, это позволяет резать любые металлы и их сплавы, в том числе углеродистую, нержавеющую и высоколегированную стали, чугун, медь, латунь, бронзу, алюминий, титан, а также биметаллы. Вследствие такой высокой температуры скорость резки в несколько раз выше, чем при газокислородной резке, а сам процесс начинается без предварительного разогрева металла. При этом металл не коробится и не деформируется, а грат, образующийся на краях реза, легко удаляется, после чего остается ровная кромка. Кроме этого потери металла минимальны из-за малой ширины реза.
Для работы аппаратов воздушно-плазменной резки требуются только электроэнергия и сжатый воздух, а при наличии компрессора только электроэнергия. По сравнению со сложностями, возникающими при использовании оборудования для газокислородной резки, такими как: заправка, переаттестация и доставка громоздких баллонов, взрывопожароопасность, использование присадок при необходимости работать с цветными металлами и сплавами, аппараты воздушно-плазменной резки требуют только замены расходных материалов (электродов и сопел), месячный запас которых легко умещается в дамской сумочке.
Одним из основных параметров плазменной резки является сила тока плазменной дуги. В настоящее время практическая верхняя граница тока кислородной плазмы составляет 440 A (при большей силе тока сокращается срок службы деталей).
В настоящее время существует большое количество оборудования плазменной резки. Оно разделяются на ручные установки плазменной резки, портативные установки, стационарные портального типа с применением рабочего стола и стационарные портального типа промышленного назначения без рабочего стола.
Ручные установки плазменной резки применяются в тех случаях когда нет необходимости в получении сложных контуров и требуемая точность обработки невысокая. Такие установки широко применяются в ЖКХ, на небольших производствах, где не требуется большая производительность.
На данном оборудовании можно обрабатывать заготовки до 50 мм толщиной, в зависимости от используемого источника питания.
Ведущими производителями источников питания являются компании Cebora, Hypertherm, Kjellberg, Thermadyne.